Securing the
Continuous
Deployment

Pipeline

Len Bass, Ralph Holz, Paul Rimba,
An Binh Tran, Liming Zhu

NICTA

Australian .
LATROBE MACQUARIE
4 onst | \mﬁ W Gritfith UNVQE-RS”Y ‘}){ % MONASH University
Jow | Trade &)
uswsﬂﬂ Investment THEUNVERSITY /207 [
0 ®RMIT gz » T ©
UNIVERSITY NI e e e pensma [JNGW NewcasiE

Australian Government Queensland smmvmm By DT e

Government OF QUEENSLAND ' NOLOGY SYONEY_ e T e e

The software supply chain has a great
deal of diversity

Open, So Urce

In House Operational

Suppliers from all over System

the world proprietary
3rd paﬂy

Many opportunities to corrupt delivery O

« Rogue versions of 3 party software

* Replace desired operational system with
compromised version

* Leave “back door” in operational system
* Network access

« Credentials

« Software complexity

Deployment pipeline is the “last mile”
of the supply chain

* The term “Last Mile” comes from telco and
logistics

* |t refers to the difficulties in getting goods and
software to the consumer from a distribution

centre
Pre:;zzmit H Commit

Suppliers Pl @

from all . Build Image UAT/
over the ' ' : and Perform staging / Deploy to Operational
world ’ Integration performance production system
S tests tests
Pre-commit H .
Commit
tests

Deployment pipeline

Developers

The security requirements and threats @

NICTA
* The security requirement we will discuss in this

talk: the image deployed into operation is a valid
Image
— This is an integrity requirement

» The integrity of the specification of the image has not been
compromised

— Example violation: overwrite dockerfile
* The image built is the image specified
— Example violation: pulling the “wrong” version of code

* The image deployed is the image built
— Example violation: deploy wrong image

« Other security requirements exist but we do not
focus on them in this talk

How do we secure a pipeline? ®

* Analyse a model of the pipeline to detect
vulnerabilities (from design perspective)

* Restructure and remodel pipeline to remove
vulnerabilities

 |deally, we are able to remove all of the
vulnerabilities. In this case the pipeline is
“secure”

» Reality: we are not able to remove all
vulnerabilities (at least not now). In this case, the
pipeline has been “*hardened”

A pipeline is complicated!!

Application in Docker

Deploy to Productio

P~

[

TA

Contimlus Deployment Pipeline

commit pushed
to GitHub

ready for deployment

b= Tear down Docker Deploy Docker Verify environment tmlz't:]n:r in Ffroducﬂont
S . - . stack start serving requests
g contalne.r with old Container from deployment usl.ng
version of newly pulled Image Assertion checking
g application, if exists vP 8 (Mini-test)
pud
E ‘Which Jenkins
w I Job triggered the Periodic Build Run all Tests
3
)] deployment?
=
=
ify
B || ruoeseme | |coopmes mae| | ivieuiens .
8 gistry, checksum from 8 8 Y Run Commit Test
compute image database comparing Suite (time
checksum checksums Commit Build: constrained tests)
Invoke Chef run to deploy
[latest Docker Image from
g Invoke Chef run to deploy and Periodic Build to OpsWorks
o execute Application Tests from Production Environment
a g - built Docker Image in
8 : : OpsWorks Testing Environment
: : 'y
c e :
S3g : —
= : N
cE -
& (Qé} Dockef Image Image Checksum Log bucket
= 2 - - Registry database
C © Application Encrypted credentials ~ Dockerfile
8 > Source code (database, AWS)
Deploy to
"""""""" Push Image to Production the Log Deployment
»»»»» Docker Image Log test results Log test results Docker Image of 8 resulgs
Regitry latest successful
Required credentials Periodic Build
for application
(database access, etc.)
o Decrypt Credentials Compute Docker g::nhrf:i?:ev:th:s:t:\?sf
[needed for Build Docker Image Image checksum, . o All tests passed? Nor
2 Application store in Database set commit build
[PP status on GitHub
v Latest
kel Periodic build
= failed
[=a]
Pull source code, Verify that Docker Notify Production
run unit tests, build Image built Deployment job to
Application correctly (using deploy tested Image
executable docker-spec) to Production
Application artifacts
(.jar, .war)
Notified by New version
previously of Application
Periodic Build Trigger ~ Application code M . - successful successfully
Commit build finished Latest Periodic build Periodic build deployed

to Production

A pipeline is complicated!!

(Jo

NICTA

Build Server

Push Image to
Docker Image
e Regitry
Required credentials :
for application - \
(database access, etc.) : T

N V4 i3
Decrypt Credentials Compute Docker
needed for Build Docker Image Image checksum,
Application store in Database
: [Ppullsource code, | L Verify that Docker
iy rununittests,build | Image built
Application correctly (using
executable docker-spec)

Application artifacts
(.jar, .war)

Periodic ﬁuild Trigger Applicaﬁbn code
commit pushed
to GitHub

Log test results

l

Notify developer of
commit test results,
set commit build
status on GitHub

Commit build finished

Log test results

All tests passed?

Yes
\ 4

Notify Production
Deployment job to
deploy tested Image
to Production

Latest Periodic build
ready for deployment

Latest
Periodic build
failed

il

Log Deployment

Deploy to
Production the
Docker Image of

latest successful resuits
Periodic Build
7'
4
Noﬁf:iéd by New version
previously of Application
successful successfully
Periodic build deployed

to Production

OUR PROCESS

Steps to harden the deployment pipeline (e

- Identify security requirements to be satisfied NICTA

— Apply principle of least privilege, isolation
* No components should be able to damage other components
+ Communications between components are well specified and enforced

10

Steps to harden the deployment pipeline (e

\ T A
“\” H (A
\ IAYE Ve

» Repeat until all of the requirements have been satisfied OR can no
longer decompose the untrustworthy components:

— Model the interactions between the components

11

Steps to harden the deployment pipeline (e

« Repeat until all of the requirements have been satisfied OR carl}| E%TA

longer decompose the untrustworthy components:
— Model the interactions between the components
— Analyse the model to check whether it satisfies our requirements

B Y

12

Steps to harden the deployment pipeline (e

« Repeat until all of the requirements have been satisfied OR carl}| E%TA

longer decompose the untrustworthy components:
— Model the interactions between the components
— Analyse the model to check whether it satisfies our requirements

— Decompose untrustworthy components causing an unsatisfied
requirement into a trustworthy and an untrustworthy portion

* Reduce the LOC of untrustworthy portions in the system | B
* Thisis the “hardening” part

* Implement new trustworthy components and modify untrustworthy
components to utilize the trustworthy components to perform
sensitive operations.

13

Original Build Server

« Build Server is a monolithic component

— Large code-base

— All the processes run under the same process space and

privileges

NICTA

Build Server

: Push Image to
e 1 Docker Image
Regitry

Required credentials
for application
(database access, etc.)

v o ‘ ,
Decrypt Credentials Compute Docker
needed for Build Docker Image Image checksum,

Application store in Database

I R I

;| Ppullsource code, L Verify that Docker
Ly run Iuamtlfest.s, build | N Image built
pplication correctly (using
executable) | docker-spec)
A Application artifacts

) [. 1 (.jar, .war)

Periodic Build Trigger

Application code
commit pushed
to GitHub

T

Log test results

l

Log test results +---ecee- :

l

Notify developer of
commit test results,
set commit build
status on GitHub

Commit build finished

All tests passed?

Latest
Periodic build
Yes failed
v ~

Notify Production

Deployment job to
deploy tested Image
to Production

Latest Periodic build
ready for deployment

|

Deploy to
Production the
Docker Image of
latest successful
Periodic Build

3

Notified by

previously

successful
Periodic build

l

Log Deployment
results

v

O

New version
of Application
successfully
deployed
to Production

14

Goal: Hardened Pipeline

 Orchestrator + Microservices

(Je

NICTA

— Many microservices are small enough to be verified
« We accept that not all can be verified
 Verified for correctness (i.e. behave as specified)

Pl D

[Orchestrator j

N\ 7 . N\ 7 N N N\ 7 4 " N\
Code Unit Tester Artefact Image Image Image Deployer
Retriever Builder Builder Verifier Archiver
- Read config i Re.ad CR w/s -Read CR w/s -Read AB w/s) Reac! 1B w/s - Read from
. - Write/Execute .] -Read IB w/s - Write on
files - Write own w/s - Write own w/s Storage
own w/s Storage

15

IN PRACTICE

N

PNy §
‘ | A

From theory to practice (Je

NICTA
 We acknowledge reluctance to change

« Jenkins is the standard go-to build server
— We use Jenkins as our build server

 Introduce a Jenkins plugin to enable microservices
iInto the build server

— Take advantage of Microservice architecture through
well-defined API that we proposed

— Microservices will do the actual work

17

Potential for damage (Jeo

Pre Steps

Add pre-build step ~

Build
Root POM pom.xmi ®
I ti
Goals and options clean package ®
Advanced...

Post Steps

© Run only if build succeeds) Run only if build succeeds or is unstable () Run regardless of build result

Should the post-build steps run only for successful builds, etc.

Execute shell

Command | pockER IMAGE=repo.research.nicta.com.au/${JOB_NAME}:${BUILD NUMBER}

echo "Build new Docker image ${DOCKER_IMAGE}"

docker build -t ${DOCKER IMAGE} ${WORKSPACE}

rm -rf ../../Project_B/workspace/*

echo "Push Docker image to remote image repository"

docker push ${DOCKER_IMAGE}

echo "Deploy new image to Chef environment ${JOB_NAME}"

java -jar deployer.jar jobname=${JOB NAME} dockerimage=${DOCKER_IMAGE}

See the list of available environment variables

Add post-build step ~ L8

Potential for damage (Je

Execute shell

Command | nockER IMAGE=repo.research.nicta.com.au/${JOB_NAME}:${BUILD NUMBER}

echo "BUlld new Docker 1mage $ {DOCKER_IMAGE}"
JORKSPACE}

rm -rf ./../Pro ect B/works-ace/*
echo "Push Docker image to remote image repository"”

docker push ${DOCKER_ IMAGE}

echo "Deploy new image to Chef environment ${JOB NAME}"

java -jar deployer.jar jobname=${JOB NAME} dockerimage=${DOCKER IMAGE}

---> Running in 7e3d2d3b657b

--=> ffdea9243904
Removing intermediate container 7e3d2d3b657b

Successfully built ffdea9243904

+ rm -rf ../../Project B/workspace/Dockerfile ../../Project B/workspace/README.md
../../Project B/workspace/pom.xml ../../Project B/workspace/src ../../Project B/workspace/target
+ echo Push Docker image to remote image repository

Push Docker image to remote image repository

prod.research.nicta.com.au Running handlers:
prod.research.nicta.com.au Running handlers complete
prod.research.nicta.com.au Chef Client finished, 5/9 resources updated in 16.10195661 seconds

Finished: SUCCESS

One working solution: Sandbox shell (Je

NICTA

Host system

Docker container

Executed in working dir:

)
OutputDirectory | Read/ >(Jhome/workspace L /home/workspace
on Host Write L] ‘

Symlink

temp_
InputDirectory | Read- P \{ Jimport] script.sh
on Host only | —~
ShellCmd, e.g. | temp_ Copied to container
mvn package | script.sh

User only interact via API
API functionalities
— Spawn Docker container with specified VM settings (Image, CPU/RAM limit, etc.)
— Map In dir (read-only) & Out dir (r/'w access) to folders in container
— Put shell commands into container
— Security mechanisms enforcement

Reduce attack surface on filesystem of Host to just the specified Out dir

>

>

Sandbox shell as Jenkins plugin (Jeo

Virtualized Shell execution

VM Settings Artefact Builder

Virtualization Type ® pocker

VM Image Name maven-oracle-java-8

Enable Networking (¢

Execution Request

Input Directory /home/user/code_workspace

Output Directory /home/user/target_workspace

Shell command mvn package

Yz

Virtualized Shell execution

VM Settings
Virtualization Type ® pocker

VM Image Name = 16

Enable Networking (¢

Execution Request

Input Directory /home/user/target_workspace

Output Directory /home/user/image_workspace

Shellcommand ' hoKER IMAGE = repo.research.nicta.com.au/${JOB_NAME}:${BUILD_NUMBER}

docker build -t ${DOCKER_IMAGE} .

Vz

Hardening the pipeline ®

 When we can fix some vulnerabilities but not all
we say we have “hardened” the pipeline

« Our recommendationsinvolve controlling access
to resources (network, 1/0, CPU, RAM)

* Ongoing: implementing micro components that
communicate with Jenkins

* Ongoing: formal verification on the micro
components

22

Summary e

« Our contributions are NICTA

— The creation of an engineering process to evaluate/modify the
design of a deployment pipeline

— Architectural recommendations for the tools in the pipeline

— Presented one practical example of hardening a pipeline

* A plugin that enables microservice architecture
« Sandbox shell

» Our process is based on
— ldentifying trustworthy components,
— Patching vulnerabilities by creating small trustworthy components,
— Refining until no vulnerabilities remain.

» The specifics of what we have done depends on the technologies we
use but the process will work for any collection of technologies.

23

