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The software supply chain has a great
deal of diversity

Open, So Urce

In House Operational

Suppliers from all over System

the world proprietary
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Many opportunities to corrupt delivery O

« Rogue versions of 3 party software

* Replace desired operational system with
compromised version

* Leave “back door” in operational system
* Network access

« Credentials

« Software complexity



Deployment pipeline is the “last mile”
of the supply chain

* The term “Last Mile” comes from telco and
logistics

* |t refers to the difficulties in getting goods and
software to the consumer from a distribution

centre
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The security requirements and threats @

NICTA
* The security requirement we will discuss in this

talk: the image deployed into operation is a valid
Image
— This is an integrity requirement

» The integrity of the specification of the image has not been
compromised

— Example violation: overwrite dockerfile
* The image built is the image specified
— Example violation: pulling the “wrong” version of code

* The image deployed is the image built
— Example violation: deploy wrong image

« Other security requirements exist but we do not
focus on them in this talk



How do we secure a pipeline? ®

* Analyse a model of the pipeline to detect
vulnerabilities (from design perspective)

* Restructure and remodel pipeline to remove
vulnerabilities

 |deally, we are able to remove all of the
vulnerabilities. In this case the pipeline is
“secure”

» Reality: we are not able to remove all
vulnerabilities (at least not now). In this case, the
pipeline has been “*hardened”



A pipeline is complicated!!
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A pipeline is complicated!!

( Jo

NICTA

Build Server

Push Image to
Docker Image
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(database access, etc.) : T
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OUR PROCESS



Steps to harden the deployment pipeline (e

- Identify security requirements to be satisfied NICTA

— Apply principle of least privilege, isolation
* No components should be able to damage other components
+ Communications between components are well specified and enforced
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Steps to harden the deployment pipeline (e

\ T A
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» Repeat until all of the requirements have been satisfied OR can no
longer decompose the untrustworthy components:

— Model the interactions between the components

11



Steps to harden the deployment pipeline (e

« Repeat until all of the requirements have been satisfied OR carl}| E%TA

longer decompose the untrustworthy components:
— Model the interactions between the components
— Analyse the model to check whether it satisfies our requirements

B Y
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Steps to harden the deployment pipeline (e

« Repeat until all of the requirements have been satisfied OR carl}| E%TA

longer decompose the untrustworthy components:
— Model the interactions between the components
— Analyse the model to check whether it satisfies our requirements

— Decompose untrustworthy components causing an unsatisfied
requirement into a trustworthy and an untrustworthy portion

* Reduce the LOC of untrustworthy portions in the system | B
* Thisis the “hardening” part

* Implement new trustworthy components and modify untrustworthy
components to utilize the trustworthy components to perform
sensitive operations.
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Original Build Server

« Build Server is a monolithic component

— Large code-base

— All the processes run under the same process space and

privileges

NICTA
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Goal: Hardened Pipeline

 Orchestrator + Microservices

(Je

NICTA

— Many microservices are small enough to be verified
« We accept that not all can be verified
 Verified for correctness (i.e. behave as specified)

Pl D

[ Orchestrator j

N\ 7 . N\ 7 N N N\ 7 4 " N\
Code Unit Tester Artefact Image Image Image Deployer
Retriever Builder Builder Verifier Archiver
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. - Write/Execute . ] -Read IB w/s - Write on
files - Write own w/s - Write own w/s Storage
own w/s Storage
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From theory to practice (Je

NICTA
 We acknowledge reluctance to change

« Jenkins is the standard go-to build server
— We use Jenkins as our build server

 Introduce a Jenkins plugin to enable microservices
iInto the build server

— Take advantage of Microservice architecture through
well-defined API that we proposed

— Microservices will do the actual work
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Potential for damage (Jeo

Pre Steps

Add pre-build step ~

Build
Root POM pom.xmi ®
I ti
Goals and options clean package ®
Advanced...

Post Steps

© Run only if build succeeds ) Run only if build succeeds or is unstable () Run regardless of build result

Should the post-build steps run only for successful builds, etc.

Execute shell

Command | pockER IMAGE=repo.research.nicta.com.au/${JOB_NAME}:${BUILD NUMBER}

echo "Build new Docker image ${DOCKER_IMAGE}"

docker build -t ${DOCKER IMAGE} ${WORKSPACE}

rm -rf ../../Project_B/workspace/*

echo "Push Docker image to remote image repository"

docker push ${DOCKER_IMAGE}

echo "Deploy new image to Chef environment ${JOB_NAME}"

java -jar deployer.jar jobname=${JOB NAME} dockerimage=${DOCKER_IMAGE}

See the list of available environment variables

Add post-build step ~ L8



Potential for damage (Je

Execute shell

Command | nockER IMAGE=repo.research.nicta.com.au/${JOB_NAME}:${BUILD NUMBER}

echo "BUlld new Docker 1mage $ {DOCKER_IMAGE}"
JORKSPACE}

rm -rf ./../Pro ect B/works-ace/*
echo "Push Docker image to remote image repository"”

docker push ${DOCKER_ IMAGE}

echo "Deploy new image to Chef environment ${JOB NAME}"

java -jar deployer.jar jobname=${JOB NAME} dockerimage=${DOCKER IMAGE}

---> Running in 7e3d2d3b657b

--=> ffdea9243904
Removing intermediate container 7e3d2d3b657b

Successfully built ffdea9243904

+ rm -rf ../../Project B/workspace/Dockerfile ../../Project B/workspace/README.md
../../Project B/workspace/pom.xml ../../Project B/workspace/src ../../Project B/workspace/target
+ echo Push Docker image to remote image repository

Push Docker image to remote image repository

prod.research.nicta.com.au Running handlers:
prod.research.nicta.com.au Running handlers complete
prod.research.nicta.com.au Chef Client finished, 5/9 resources updated in 16.10195661 seconds

Finished: SUCCESS



One working solution: Sandbox shell (Je
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Host system

Docker container

Executed in working dir:

)
OutputDirectory | Read/ >( Jhome/workspace L /home/workspace
on Host Write L ] ‘

Symlink

temp_
InputDirectory | Read- P \{ Jimport ] script.sh
on Host only | —~
ShellCmd, e.g. | temp_ Copied to container
mvn package | script.sh

User only interact via API
API functionalities
— Spawn Docker container with specified VM settings (Image, CPU/RAM limit, etc.)
— Map In dir (read-only) & Out dir (r/'w access) to folders in container
— Put shell commands into container
— Security mechanisms enforcement

Reduce attack surface on filesystem of Host to just the specified Out dir

>

>




Sandbox shell as Jenkins plugin (Jeo

Virtualized Shell execution

VM Settings Artefact Builder

Virtualization Type ® pocker

VM Image Name maven-oracle-java-8

Enable Networking (¢

Execution Request

Input Directory /home/user/code_workspace

Output Directory /home/user/target_workspace

Shell command mvn package

Yz

Virtualized Shell execution

VM Settings
Virtualization Type ® pocker

VM Image Name = 16

Enable Networking (¢

Execution Request

Input Directory /home/user/target_workspace

Output Directory /home/user/image_workspace

Shellcommand ' hoKER IMAGE = repo.research.nicta.com.au/${JOB_NAME}:${BUILD_NUMBER}

docker build -t ${DOCKER_IMAGE} .

Vz




Hardening the pipeline ®

 When we can fix some vulnerabilities but not all
we say we have “hardened” the pipeline

« Our recommendationsinvolve controlling access
to resources (network, 1/0, CPU, RAM)

* Ongoing: implementing micro components that
communicate with Jenkins

* Ongoing: formal verification on the micro
components

22



Summary e

« Our contributions are NICTA

— The creation of an engineering process to evaluate/modify the
design of a deployment pipeline

— Architectural recommendations for the tools in the pipeline

— Presented one practical example of hardening a pipeline

* A plugin that enables microservice architecture
« Sandbox shell

» Our process is based on
— ldentifying trustworthy components,
— Patching vulnerabilities by creating small trustworthy components,
— Refining until no vulnerabilities remain.

» The specifics of what we have done depends on the technologies we
use but the process will work for any collection of technologies.
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