May 19, 2015

Performance of Defect Prediction in Rapidly Evolving Software

<u>Davide G. Cavezza</u>, Roberto Pietrantuono, Stefano Russo

Dipartimento di Ingegneria Elettrica e delle Tecnologie dell'Informazione

Università degli Studi di Napoli Federico II

RELENG 2015 Firenze, Italy May 19, 2015

Motivations (1/2)

- Defect prediction gives insight into product quality
 - Useful to make decisions on when to release
- Rapidly evolving development paradigms
 - Agile methods
 - Continuous Integration, Continuous Delivery
 - Short release-cycle required

RELENG 2015 Firenze, Italy May 19, 2015

Motivations (2/2)

- Classical "static" defect prediction: choose a model and cross-validate it on all the available data
 - There is no insight on how long the model remains valid
 - This is a key concern in rapidly changing software

• We propose a dynamic prediction model

 The model is periodically retrained with the most recent data

RELENG 2015 Firenze, Italy May 19, 2015

Commit-level defect prediction

- Relationship between a commit's features and its defectiveness
- Learning algorithms are used to predict if a commit is defective given its feature values
 - Supervised learning: the training set consists of commits whose defectiveness has been assessed

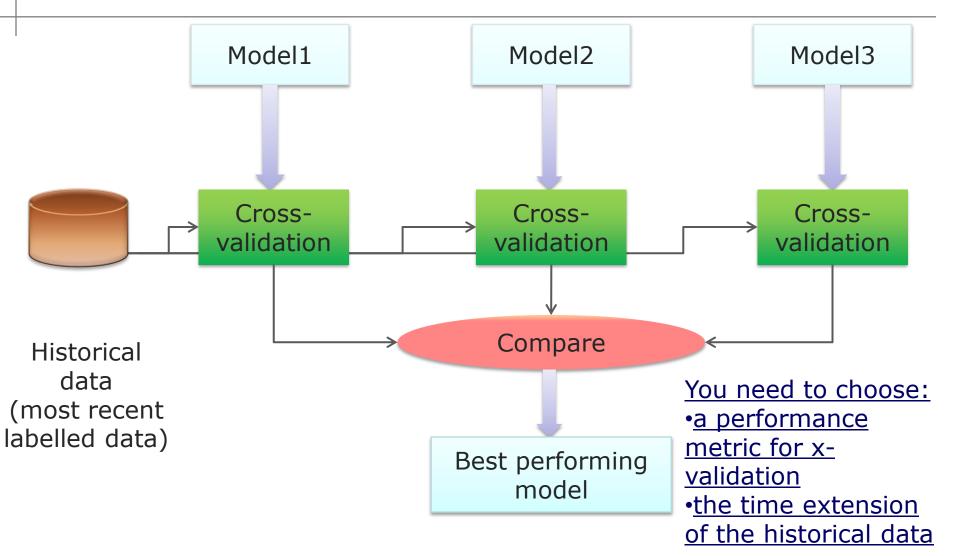
RELENG 2015 Firenze, Italy May 19, 2015

Dynamic prediction phases

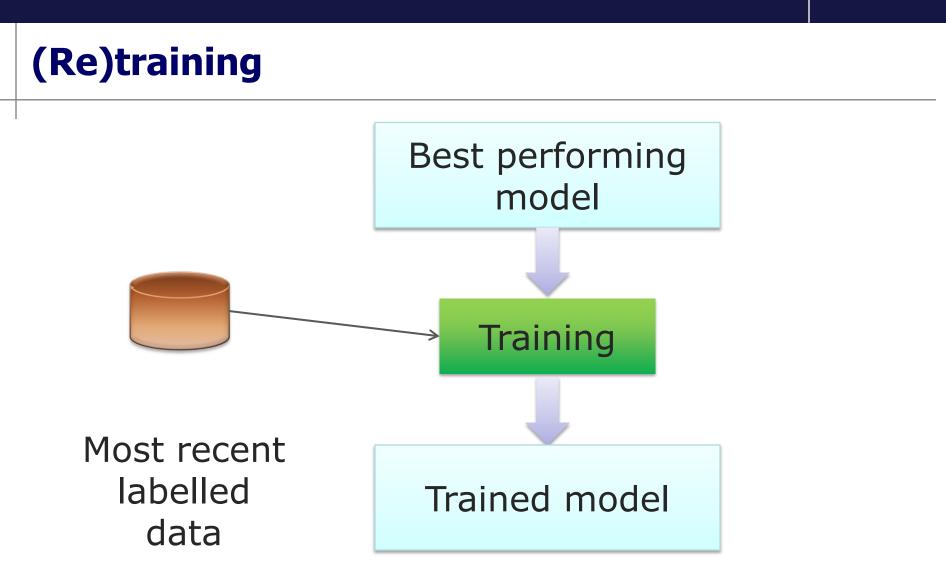
- 1. Model selection
- 2. (Re)training
- 3. Prediction
- 4. Evaluation

RELENG 2015 Firenze, Italy May 19, 2015

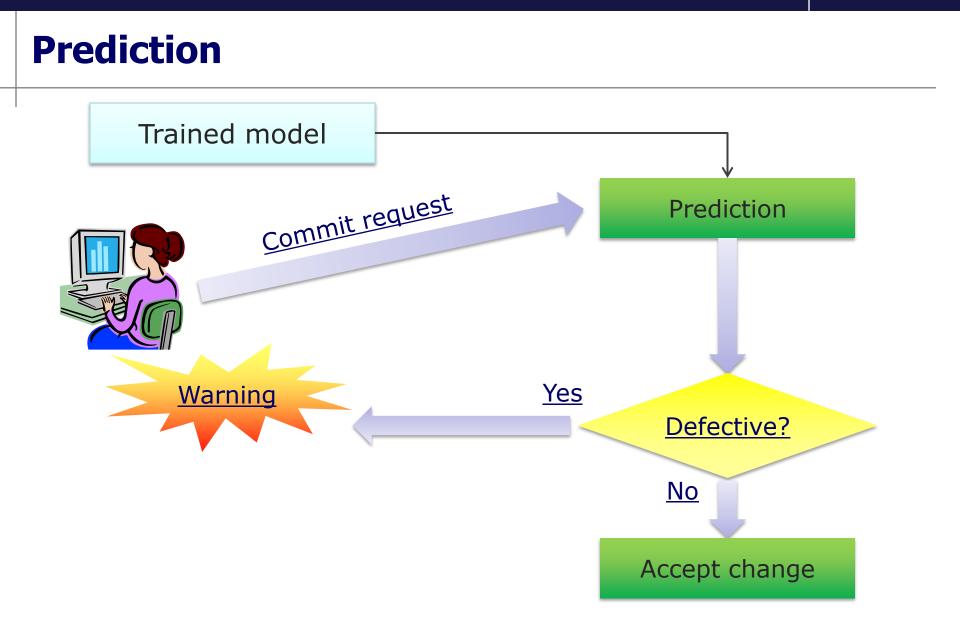
Model selection



RELENG 2015 Firenze, Italy May 19, 2015



RELENG 2015 Firenze, Italy May 19, 2015

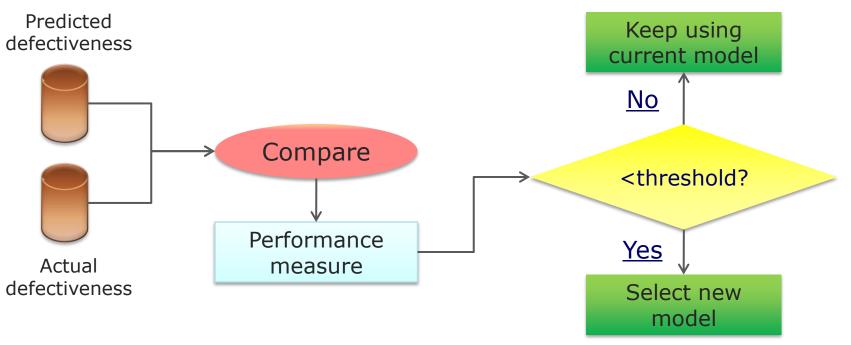


RELENG 2015 Firenze, Italy May 19, 2015

Evaluation

Executed periodically

Time interval between two evaluations must be chosen



RELENG 2015 Firenze, Italy May 19, 2015

Experimental setting (1/4)

Eclipse JDT

Commit data extracted from Git repository

SZZ algorithm to distinguish defective and non-defective commits

Total commits	Timespan	Defective commits	Non- defective commits
26,009	From 2001-06-05 To 2014-12-13	13,984 (53.77%)	12,025 (46.23%)

RELENG 2015 Firenze, Italy May 19, 2015

Experimental setting (2/4)

Commit-level features

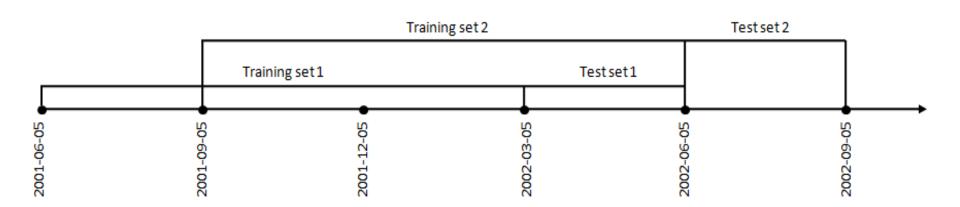
Number of modified files (NF)	Number of files modified in the commit
Entropy	Scattering of modifications throughout the modified files
Lines added (LA)	Number of lines added in the commit
Lines deleted (LD)	Number of lines deleted in the commit
FIX	Binary value indicating whether or not the commit is a bug fix
Number of developers (NDEV)	Number of developers that changed the files touched by the commit before the commit was issued
AGE	Average time interval between the current and the last change across all the involved files
Number of unique changes (NUC)	Number of unique commits that last changed the involved files
Experience (EXP)	Experience of the developer, measured as the number of changes previously committed by him
Recent experience (REXP)	Number of past commits of the same developer, each weighted proportionally to the number of years between that commit and the measured one

RELENG 2015 Firenze, Italy May 19, 2015

Experimental setting (3/4)

Repartition of training and test sets:

- Training sets duration: 9 months
- Test sets duration: 3 months



RELENG 2015 Firenze, Italy May 19, 2015

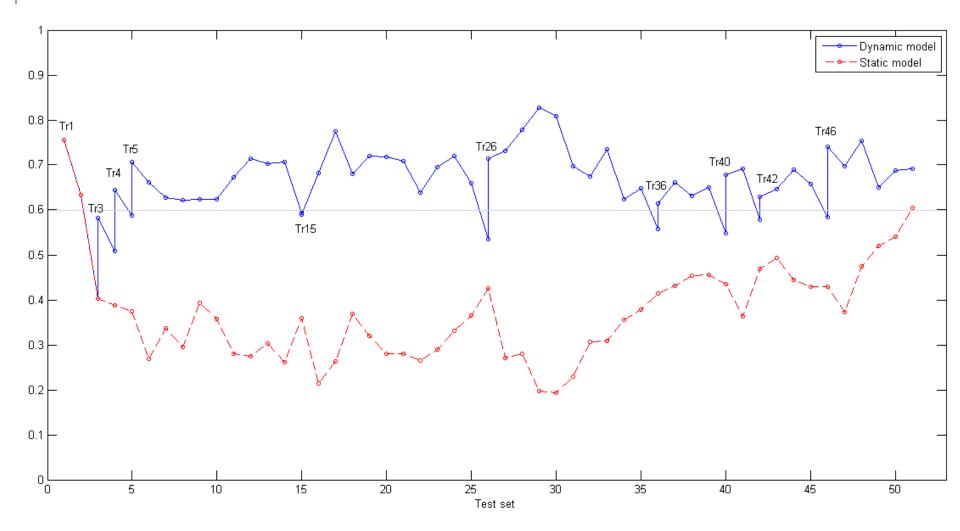
Experimental setting (4/4)

- Models used:
 - **J**48
 - OneR
 - NaiveBayes
- Performance metric:

• F-measure =
$$2*\frac{precision*recall}{precision+recall}$$

RELENG 2015 Firenze, Italy May 19, 2015

Results: Static vs Dynamic model

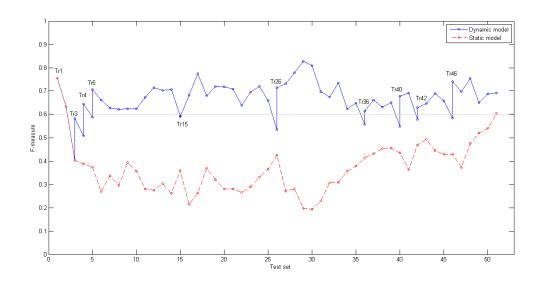


RELENG 2015 Firenze, Italy May 19, 2015

Discussion

Dynamic model outperforms static

But there are two situations in which neither can predict defectiveness with sufficient accuracy



RELENG 2015 Firenze, Italy May 19, 2015

Future challenges

- Assessment of the influence of parameters like
 - Training windows extension
 - Frequency of evaluations
 - Performance measure choice
- Problem: lack of knowledge on recent commit defectiveness

RELENG 2015 Firenze, Italy May 19, 2015

Thank you! Questions?

