
1

Factors Impacting Software Release Engineering:

A Longitudinal Study

Noureddine Kerzazi
Dept. Research & Development, Payza.com

Montreal, Canada

noureddine@payza.com

Foutse Khomh

SWAT, École Polytechnique de Montréal

Montreal, Canada

foutse.khomh@polymtl.ca

Abstract—Software release teams try to reduce the time needed

for the transit of features or bug fixes from the development

environment to the production, crossing all the quality gates.

However, little is known about the factors that influence the time-

to-production and how they might be controlled in order to speed

up the release cycles. This paper examines step by step the release

process of an industrial software organization aiming to identify

factors that have a significant impact on the Lead Time and

outcomes of the software releases. Over 14 months of release data

have been analyzed (246 releases from the isolated source code

branches to the production environment). We discuss three

dimensions under which a series of factors could be addressed:

Technical, Organizational, and Interactional. We present our

finding in terms of implications for release process improvements.

Index Terms— Empirical Software Engineering, Knowledge

management, Software Process, Software Quality, Entropy.

I. INTRODUCTION

There is a trend to reduce the release cycle from months to

weeks or even days [1]. When the release process is well

controlled (i.e., repeatable) and smooth (i.e., automated when

possible), organizations can afford short release cycles. The fact

is more evident in the context of wed based applications.

However, the scope of release team activities is large: activities

range from source code merging between branches, crossing all

automated tests, building and packaging the final application,

coordinating with other individuals (DBA, IT, etc.), and finally

pushing the application to the production servers.

We have observed many times, team members bugging the

performance, security, or builds at the last minutes of the release

sprint. For instance, integration of parallel changes is error prone

[2]. Release issues are not only affecting the current release, but

also blocking the upcoming releases, which consequently

decreases the capability of delivering values to the end users.

Organizations have little information available to assess the

effectiveness of their release process.

Determining the factors that impede the release process is

arguably the most challenging issue faced by the release

engineering field today. It can be helpful to understand the

practices, tools, and coordination that are needed to improve the

delivery process. Hence, we conducted a longitudinal study to

examine 246 releases in a large-scale development context. We

analyzed data and observed the release team in action to identify

the kinds of problems they face and the extent to which their

release process can be improved. The main goal of this paper is

to empirically examine the key factors impacting the software

release process.

There are many factors that are claimed to have a potential

effect on the release process [3]. Some of these factors have been

validated empirically [1, 4]. In this paper, we explore the

potential impact of technical, organizational, and interactional

factors on the lead time of the release process. Technical factors

include source code merging and integration, automated tests,

and packaging of the application. The organizational factors

include the functional dependencies, the design of branching

structures, the planning of releases, and the management of

branches (syncing). Interactional factors concern aspects such as

(1) the coordination with developers to fix merge issues, the

coordination with architects to resolve performance issues, with

database administrators to run scripts at each level reached by

the code, and also the coordination with the IT department; (2)

and socio-technical congruence.

The paper is organized as follows: Section 2 presents the

context and describes the research method used to collect data.

Section 3 summarizes the factors that have been asserted as

influencing the software release outcomes in terms of Lead Time

and failures. Section 4 presents the results and limitations

followed by our conclusion in section 5.

II. METHOD

A. Context

The study takes place in a large industrial organization

dedicated to the development of a complex financial system. Its

web-based products are used in 192 countries. We had the

opportunity to be on site for an extended period of time (more

than 14 months). The system was composed of 1.5 million lines

of code organized in 8,524 source code files. The development

team is distributed across two different sites located in Canada

and India with a centralized release team. We were aiming to

identify factors that negatively impact the release process Lead

Time. This goal lead to the following research questions:

RQ1: What are the factors impacting the release

engineering process?

RQ2: What is the impact of each factor on the Lead Time

of releases?

Reviewer
Text Box
This paper has been accepted and presented at RELENG'14, and has been archived on the workshop website at http://releng.polymtl.ca/. Each submission was peer-reviewed by three members of the program committee
 (a mixture of researchers and practitioners).

2

B. Data Collection

We collected data based on information pertaining to 246

releases recorded in the release calendar of the company.

Figure 1 shows the number of releases grouped by month. Data

included timestamps, brief description of the content, main list

of features, site location, and the revision tag in the Software

Configuration Management system (SCM). We have traced

back (timestamp) each release from the PreRelease branch to the

branch where the changes have occurred. Data extraction was

automated thanks to the collaborative system in place, namely

TFS. After mining data from the SCM, we decided to exclude

41 releases because the source code was modified directly within

the PreRelease branch and consequently considered as data

outliers that might skewed the Lead Time computation.

Fig. 1. Distribution of Releases by Month.

For each release, we have traced back the branch from which

the code was released and computed the diff between the

timestamp when moving the code from that branch towards a

releasable branch (PreRelease), crossing the Trunk branch as

shown in figure 2. Other relevant information came from work

items within the collaborative system such as bugs and reports

of test activities.

C. Release Process Overview

This section presents an overview of the release process as it

is conducted in the company. As shown in Figure 2, the software

development process is parallelized; teams of developers work

in parallel on code isolated within separate branches. The

branches are recurrently synchronized with the main branch

(Trunk). Once the development is completed and tested

(manually) within a branch, the release process starts. Release

team carry out a forward integration (FI) from Trunk to that

branch aiming to resolve integration conflicts within the branch

instead of Trunk. FI ensures stability in the main stream branch.

Following that step, Release team run a collection of integration

tests that evaluates the recent integrated features as well as

regression tests. It’s worth noticing that in the meanwhile, Trunk

is frozen. When QA team gives the green light, release team

carry out a backward integration (BI), from the branch to the

Trunk. Because the Trunk is always unstable due to the

integration work, the release team cannot release from that

branch. Another reason relates to the fact that the release team

has to consolidate a package, code coming from different

branches, before the release. Code is stabilized within the Trunk

branch and moved to the prerelease branch. The code is

precompiled in the prerelease branch and regression tests are

triggered. QA carry out smoke tests on the staging environment

with real databases and configurations close to those from the

production. Finally the packages are pushed to the production

environment.

Fig. 2. Exemplified Branching Strategy

III. RQ1: WHAT ARE THE FACTORS IMPACTING THE RELEASE

ENGINEERING PROCESS?

The first step of our investigation towards the identification

of factors that might impact the software releases refers to the

process point of view. We sought first to identify the breakdown

list of release activities, involved roles, and input/output

artifacts. These activities range from the integration of code from

an isolated branch, the transit of the source code until the

production environment. One can observe that a number of

responsibilities overlap. For instance, after merging an isolated

branch to the mainline, the release team must wait for the results

of the integration tests performed by QA team. We extract the

following factors based on their impact on the duration of the

release process:

A. Technical Factors

a) Merges and Integration

Merges and integration depend on the magnitude of the

release [5]. We define the magnitude of a release as the distance,

in terms of source code changes, between the trunk and the

branch to be released. This distance can be expressed with: (1)

the size of changes (measured with Churn metrics [6]), and (2)

the complexity of the changes (measured with concentration of

dependencies [7]). While Churn metrics give an idea about the

size of the release, it is not sufficient to predict the integration

efforts and potential merge issues. For instance, adding a large

amount of new code is less risky than changing a method

signature. Hence, dependency metrics are required to explore the

amount of effort necessary to integrate the code. We hypothesize

that the magnitude of a release influences the Lead Time as well

as the product quality.

b) Testing

Test activities are time consuming. While unit and regression

tests are automated, we still do have manual tests for the newly

integrated features. Even most of test activities are carried out

by QA team, the release team should wait for the green light

3

before moving from a branch to another. Manual testing is not

supposed to be part of the release process. However, when bugs

are found during the release sprint, QA members get involved to

fix these bugs (through smoke tests). Furthermore, Technical

dependencies makes it difficult to trust partial tests of the system.

After each change (even small), the entire system should be re-

tested. Consequently, shorter release cycles depend on shorter

testing periods [1].

c) Packaging the application

Packaging refers to the pre-compilation, bundling of binary

resources, and the preparation of configuration files. In contrast

to the normal compilation carried out by developers, the pre-

compilation aims to enhance the performance and security of the

source code within the production environment. Pre-compilation

is more restrictive than a normal build, which might need code

adjustment. Bundling binary resources refers to installation of

packages and APIs that the code depends on. These packages are

generally available in a public binary repository (e.g., NuGet,

Artifactory). Finally, some releases might need a specific setup

which is prepared by the release team.

B. Organizational Factors

a) Functional Dependencies

We have seen many times release team releasing source code

without knowing what the code does. The link between technical

elements, under the released and functional work items (e.g.,

Projects, Features, and Bug fixes) should be described in release

notes.

b) Design of an Adapted Branching Structure

While developers construct parts of the application, release

engineers have to build the pipeline to deliver these parts to the

end-users. Thus, having an adequate branching structure is

crucial [6, 8, 9]. However, there is no recipe for a good branching

structure. We extract a list of principles stated by the release

team in order to support the design of an effective branching

structure adapted to the context of the organization:

 P1: Have a releasable branch at any time.

 P2: All changes have to go through QA gates.

 P3: Isolate the code not people.

 P4: Source code must transit by merges never by copy/paste.

 P5: Do not freeze the development.

In an ideal situation, a good architecture is to align branching

structure with architectural components and then organize teams

to work in isolated manner on components within dedicated

branches [10]. However, this ideal situation is not possible with

layered systems such as web-based systems. The changes,

required to develop a new feature, could be scattered in different

branches leading to integration failures when it comes to

releasing that feature.

c) Release Planning

Releases planning is often underestimated. For instance, a

feature can be offered as part of a release only if all its necessary

tasks are done before the release date [11]. Hence, the

importance of a good release planning. We have observed cases

of releases that were blocked because of incomplete

interdependent technical elements.

C. Interactional Factors

a) Coordination

Task dependencies drive the need to coordinate work

activities [12]. Coordination arises as a response to those

questions such as who should do what, when is it required, what

approval is requested for which activity, and who should be

informed [13]. The effect of coordination goes beyond the

boundaries of development teams. Yet, it is often overlooked or

neglected when analyzing the release processes. In our context,

coordination involves Database administrators (DBA) who are

responsible for running scripts in databases related to each stage

(e.g., branch, regression, staging, and production), Business

analysts (BA) who keep tracking on their ongoing projects,

testers (QA) who should be notified when edits have to be tested

on some branches, and finally developers who should resolve

merge conflicts or help figure out problematic situations in the

production environment.

b) Socio-Technical Congruence

Socio-Technical Congruence (STC) refers to the alignment

between the technical dimension of work and the social

relationship between team members [12]. It has been observed

that release engineers not only have to coordinate with other

teams, but also should exhibit matching skills when interacting

with other members. For instance, resolving performance issues

happening in production needs STC with architects and DBAs.

In this paper, we only present an in-depth analysis of technical

and organizational factors because of the space limitation.

IV. RQ2: WHAT IS THE IMPACT OF EACH FACTOR ON THE

LEAD TIME OF RELEASES?

The Lead Time of the release process is largely impacted by

test activities. Although test activities are not supposed to be part

of the release process, these activities are included in the process

when computing the Lead Time because they are performed

after the transition of code from one branch to another (e.g.,

integration test within the mainline branch).

Figure 3 shows that 86% of the release time is consumed

by both manual and automated tests. Testing activities

threaten to become the bottleneck of the release process. In fact,

because of the often poor description of functional

dependencies, release team usually triggers all the regression test

cases every time that a change is performed. With a good

knowledge of the functional dependencies, the release team will

be able to execute only a subset of the test cases, which will

considerably reduce the testing time.

4

Fig. 3. Repartition of the Effort in the Release Process

Moreover, the computation of the merge effort involves

less overhead as compared to tests (6%). We found that the

merge effort is correlated with the stabilization effort (6%).

Stabilization refers to the code adjustments after merging the

source code between two branches. The more the merge effort is

large, the higher is the stabilization effort.

A. Impact of Technical Factors

Figure 4 shows the amount of files impacted by each release.

On average, 142 files (SD = 326.68) are changed for each

release. The duration of merges and integration depends not

only on the extent of changes made in the isolated branch,

but also on the flow of changes crossing the main branch

(Trunk). Further investigation into the concentration of

dependencies provides more accurate estimation of the merge

duration. Figure 5 illustrates a real example of the transition of

churn metrics between the Trunk and a branch. The example

illustrates 3 forward merges; the first one containing 443 files

with a code churn of 14,306. After three forward merges that

kept the branch in relatively sync with the Trunk, a release

happens. 76 files have been merged in the trunk with a code

churn equal to 3,454. Resulting in a large effort to keep the

branch synchronized. This effort is necessary to avoid teams

facing complex and risky big-bang merges afterwards.

Excluding 20 min to run the unit tests plus 54 min to run

regression tests, the rest of the time is allocated to manual

testing. When tests are not conclusive, developers are involved

in a costly sequence of fixing/re-testing. The release team tries

to avoid this situation and recommends to always finishing the

testing in the branches before moving forward to release.

Fig. 4. Number of Files Impacted by the Releases.

Fig. 5. Propagation of Changes between Branches through Time.

Release team tried to speed up the process by cutting down

the effort of tests. To do so, team attempted to consolidate a

single package, within the Trunk branch, fed by the code from

different branches. The situation was worse than the previous

because the integration and code stabilization took more time

than expected respectively (15% for integration and 40% for

stabilization), the pipeline of release was blocked. The team goes

into a vicious circle of bugs’ identification, correction, and re-

test. In other words, integration tests of changes that come from

different branches might be a challenging task. Previous work

indicated the importance of the size of the changes on the

product quality[14]. We claim that in the context of parallel

development, it’s more valuable to release smaller and often.

Further analyses are required for more evidence.

B. Impact of Organizational Factors

We found that over 20% of the release time is allocated to

the organizational dimension. First, while release team are

dealing with source control ChangeSets and versions, BA team

deals with features and Bugs. Release team (RT) has to find

efficient ways to map the ChangeSets to Features and Bugs

descriptions. Moreover, there is a need to identify which parts of

the system are affected by the release. Second, code can be

committed in an isolated deep branch. RT have to move the code

toward the releasable branch taking care of its technical

dependencies. Branching structure has an impact not only on the

transit time of the code, but also on the amount of errors injected

while merging. Third, daily strategic planning helps to set

priorities and ensure that members are working toward a

common goal.

C. Impact of Interactional Factors

Coordination in release activities is a crucial task [15].

From a process point of view, we observed that the release

team coordinates with other roles: Developers, Integrators,

Testers, Database Administrators, Architects, IT support,

and Business Analysts. These coordination activities are

embodied in the release process, and consequently, could affect

the overall Lead Time of releases. Due to space constraints, we

focus only on the interaction with Testers. We consider two

levels of interaction: Direct and Indirect. For instance, direct

interactions happen between the Release Team and Testers to get

the green light to move to the next step of the release process,

while the indirect interactions happen between testers and

developers for code stabilization. Further analysis of indirect

interaction reveals that the release team loses the control of the

process making it harder to coordination the back and forth

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

5

interactions between testers and developers. This finding might

explain the high amount of time attributed to the tests activities.

In future work, we will perform a more detailed analysis of a

release team’s network to measure the effects of emergent

interactions on the release team’s productivity and product

quality.

D. Limitations and Threats

Since the results of this study are obtained from a single

company, we cannot assume the generalization of our findings.

Concretely, the release process activities in the context of this

company might be different to other contexts, meaning that there

is a possibility that the challenges faced by the studied release

team do not occur within other organizations. Nevertheless, we

believe that these findings constitute a significant addition to the

body of knowledge [16] about factors impacting the software

release practices. Data along with observations have been

collected throughout a long time interval (over 14 months) in a

large industrial company.

Another limitation lies in the categorization and

classification of the studied factors. This taxonomy of factors

was inspired by our previous analysis of the release process

activities [15] and previous works (e.g., [4]) about integration

failures.

V. CONCLUSION

This study examines the factors impacting the software

release engineering process in terms of Lead Time. The

contribution of this paper to the software engineering literature

is twofold. First, we set out the factors affecting the release

engineering field according to three dimensions: technical,

organizational, and interactional. Such structuration of the

factors allows further analysis. For instance, there is little

research related to the collaboration of release teams with other

teams. Second, our findings provide empirical evaluations of

eight factors on the release time.

We identified 3 factors pertaining to the technical dimension:

Merges & Integration; Tests; and Packaging. Three factors

related to the organizational dimension: Functional-

dependencies; branching structures; and release planning. Our

analyses reveal that tests are the most time consuming activities

(86%). A lot of improvement has been done with continuous

builds, binary packages bundling, and regression testing.

Release engineers need more tools and practices to implement

smart automated tests in order to enhance the Lead Time of

software releases. This paper also illustrated the need for more

congruence among teams, especially in the context of parallel

development.

REFERENCES

[1] F. Khomh,T. Dhaliwal,Y. Zou, et al., Do faster releases

improve software quality? An empirical case study of

Mozilla Firefox. in MSR'12, 179-188, 2012.

[2] D.E. Perry,H. Siy and L. Votta Parallel changes in large-

scale software development: an observational case study.

ACM Trans. Softw. Eng. Methodol., 10 (3): 308-337,

2001.

[3] J. Tsay,H.K. Wright and D.E. Perry. Experiences mining

open source release histories Proceedings of the 2011

International Conference on Software and Systems

Process, Waikiki, Honolulu, HI, USA, 208-212, 2011.

[4] M. Cataldo and J.D. Herbsleb. Factors leading to

integration failures in global feature-oriented

development: an empirical analysis. ACM ed. 33rd

International Conference on Software Engineering,

Waikiki, Honolulu, HI, USA, 161-170, 2011.

[5] A.E. Hassan and K. Zhang, Using Decision Trees to

Predict the Certification Result of a Build. in Automated

Software Engineering, 2006. ASE '06. 21st IEEE/ACM

International Conference on, 189-198, 2006.

[6] N. Nagappan and T. Ball, Using Software Dependencies

and Churn Metrics to Predict Field Failures: An Empirical

Case Study. in 1' Int Symp on Emp Soft Eng and

Measurement, 363-373, 2007.

[7] M. Eaddy,T. Zimmermann,K.D. Sherwood, et al. Do

Crosscutting Concerns Cause Defects? IEEE Trans. Soft.

Eng., 34 (4): 497-515, 2008.

[8] C. Bird and T. Zimmermann, Assessing the value of

branches with what-if analysis. in 20th Int Symp on the

Foundations of Soft Eng, (Cary, North Carolina), 2012.

[9] E. Shihab,C. Bird and T. Zimmermann, The effect of

branching strategies on software quality. in Int'l Symp on

Emp soft. Eng.and Measurement, (Sweden), 301-310,

2012.

[10] N. Nagappan,B. Murphy and V.R. Basili, The influence of

organizational structure on software quality: an empirical

case study. in ICSE, (Leipzig, Germany), 521-530, 2008.

[11] A. Ngo-the and G. Ruhe Optimized Resource Allocation

for Software Release Planning. IEEE Trans on Soft Eng,

35 (1): 109-123, 2009.

[12] M. Cataldo,P.A. Wagstrom,J.D. Herbsleb, et al.

Identification of Coordination Requirements Implication

for the design of collaboration and Awareness Tools

Computer Supported Cooperative, Alberta, Canada, 353-

362, 2006.

[13] R.E. Kraut and L.A. Streeter Coordination in Software

Development. ACM, 38 (3): 69-81, 1995.

[14] A. Mockus and D.M. Weiss. Understanding and

predicting effort in software projects Proc of the 25th

International Conference on Software Engineering,

Portland, Oregon, 274-284, 2003.

[15] N. Kerzazi and P.N. Robillard. Kanbanize the Release

Engineering Process 1st International Workshop on

Release Engineering, San Francisco, CA, USA, 9-12,

2013.

[16] V.R. Basili,F. Shull and F. Lanubile Building Knowledge

Trough Families of experiments IEEE Trans on Soft. Eng.,

25 (4): 456-473, 1999.

