
A Prototype Tool Supporting When-to-release

Decisions in Iterative Development

Jason Ho

Department of Computer Science

University of Calgary

Calgary, Alberta, Canada

hott@ucalgary.ca

Shawn Shahnewaz

Department of ECE

University of Calgary

Calgary, Alberta, Canada

smshahne@ucalgary.ca

Guenther Ruhe

Department of Computer Science

Department of ECE

University of Calgary

Calgary, Alberta, Canada

ruhe@ucalgary.ca

Abstract— Shortening release cycles is one of the key

elements for achieving highly competitive product releases.

However, decisions about when-to-release are inherently

complex: The potential competitive advantage through faster

delivery needs to be balanced against the degree of readiness of

the product (overall quality) and the added value through new

and revised features. Pro-active analysis of the estimated

impact of running through various release scenarios is

expected to provide insights and essential inputs for the actual

decision-making.

When-to-release decisions are largely re-actively using

existing release planning tools such as IBM Focal Point, On-

time (for Scrum-based development) or ReleasePlanner. In this

paper, the authors propose a plugin tool that analyzes the

impact of varying the release date. More precisely, we

proactively investigate the trade-off relationship between the

total amount of implemented functionality and the predicted

quality achieved from the related effort investment. As a result,

the product managers are empowered to see the projected

impact of releasing earlier (or later) in terms of reduced (or

added) functionality and/or quality. As a proof-of-concept, we

provide some preliminary results on the usage of the tool.

Keywords—Release engineering, when-to-release, prototype

tool, decision support, software quality, software maintenance.

I. INTRODUCTION

The lack of commitment from stakeholders and

conflicting interests in release planning decisions was

identified by Ebert and Brinkkemper [2] as one of the key

reasons for delays in delivering software solutions. Deciding

the proper release time is of key importance for the success

of implementing and maintaining a software product [9]. The

product manager often has to evaluate and decide among a

large set of release alternatives. This is largely done by

balancing between release duration, predicted quality of the

release and the amount of functionality to be offered.

In this paper, we present a When-to-release Plugin

(W2RP) that supports the pro-active analysis of a sequence

of release scenarios defined by the user. In is able to provide

support for answering questions such as:

• How many more (less) features will be implemented as

the result of extending (reducing) the release -date?

• How to best compromise between creating new

functionality and expected quality (measured in defects

detected and fixed) of the release?

II. BACKGROUND AND PROBLEM STATEMENT

In this section, we provide the key concepts needed for

the understanding of the tool’s approach and workflow. For

brevity, we refer to [4] and [10] for further details.

A. When-to-release Planning

A (product) feature is a set of logically related

requirements that enables the satisfaction of users’ business

objectives [11]. In this paper, we examine feature at a high

functionality level, instead of specific detailed requirements

of implementation. When-to-release planning, therefore, is

the problem of assigning a set of features to an upcoming

release and deciding about the actual release date in

consideration of the total release quality and release value.

Both criteria -are defined below.

B. Total Release Value

The value of a feature is evaluated based on its ability to

satisfy business objectives and users’ requirements [11]. For

our purposes, business value is determined on a nine- point

scale based on the evaluation of an organization’s

stakeholders and product experts. This measure can easily be

translated into projected revenue, prioritized features value,

etc. which are often used in software industry [7].

The when-to-release decision making is based on the

assumption that there is an existing plan comprising a set F0

of features to be offered at the upcoming release with release

date RD0. This plan can be generated by existing release

planning tools or being the result of manually planning.

In our model, the value, called value(n) of feature f(n) is

defined as weighted average of priorities assigned to features

and taken over all (weighted) criteria and for all (weighted)

stakeholders [10]. The Total Release Value TRV(F0) is

defined as the sum of all values of individual features.

TRV(F0) = ∑f(n) from F0 value(n) (1)

In the ReleasePlanner tool, cross-cutting, integrated

features are considered, as long as they are designed and

provided together with accurate effort estimates.

C. Total Quality of a Release

In this paper, the notion of software quality is associated

with the number of defects found and fixed before the next

Reviewer
Text Box
This paper has been accepted and presented at RELENG'14, and has been archived on the workshop website at http://releng.polymtl.ca/. Each submission was peer-reviewed by three members of the program committee
 (a mixture of researchers and practitioners).

release. Similarly, we approximate expected quality of a

release through the result of the effort invested in testing.

This concept is extensively studied and utilized under

software reliability growth models [12]. Current research

trends show that test effort dependent reliability growth

models are effective and meaningful to the industry

practitioners [2]. Test effort based quality models are mainly

grouped into two classes of models: concave and S-shaped,

as illustrated in Fig. 1. Both models fundamentally indicate

that the defect detection rate decreases as the number of

defect detected (and fixed) increases, and the total number of

defects detected approach a finite value -close to zero.

Details about these models can be found in [12].

Figure 1: Quality model per feature based on test efforts

For each feature in all the possible pool of features F,

based on its initial complexity estimate, a specific test effort

is allocated. The expected release quality of the individual

feature can be determined by selecting an appropriate quality

model, either concave or S-shaped model.

Let Q(n, a n, b, tn) denote the estimated quality of feature

f(n) based on the selected model. Therein,

- tn is the estimated test effort for the feature f(n),

- an is expected number of defects for f(n) and

- b is the context specific shape factor of the selected

model. By varying b, the shape of S – its concavity

(Figure 1) can be adjusted for a project.

The total release quality can be defined as the

aggregation of the individual feature quality models:

TRQ(F0) = Aggregation {Q(ai,b,t_efforti): i= 1...n} (2)

Equation (2) implies that, by varying the test effort from

the features, we can estimate the minimum and maximum

release quality by aggregating the quality values of each

features (based on their respective expected defects found

and fixed). Therein, the selection of the appropriate

aggregation operator is context specific. In the context of

information fusion, many aggregation operators are proposed

such as Arithmetic Average, Geometric Average, Weighted

Average, and Ordered Weighted average [13].

In this work, we employed the geometric average for

aggregating the individual quality of the features. As the

ranges of the individual feature quality differ, geometric

average provides a meaningful aggregated expected release

quality. The model can be easily adapted to other

aggregation operators, depending on project context.

D. Problem Statement

Based on the initial (baseline) when-to-release plan (RD0,

F0) characterized by a release date RD0 and a feature set F0,

we study a series of release scenarios from varying the

release date. Each of these scenarios is a variation of the

original release plan, and is determined from (RD0, F0) by re-

balancing the effort allocated to testing (impacting expected

quality) versus functionality implementable within the

release duration RDi.

As described in the pseudo-code (Table 1), we follow a

greedy approach. Efforts from testing or implementation are

exchanged, up to the threshold of (pre-set) reduction factors,

and new solutions are generated. The when-to-release

problem [4] is to determine as set of trade-off release plans

generated from a series scenarios defined by the user from

this exchange.

III. RELATED WORK

Software reliability guarantees that software will work

without failure for a specific time [3]. As software systems

get more complex, completely removing all defects is

challenging. The underlying assumption is that during the

testing phase, correction of errors or bugs does not introduce

any new errors and reliability of the overall software

increases as bugs are discovered and fixed [9]. However, if

testing takes too much time, the product may go over budget

and miss the window of (business) opportunity [7] [8].

Currently, there is a lack of software tools that address

the when-to-release problem as described here. McElroy &

Ruhe [6] studied when-to-release decisions by allowing time-

dependent value functions and adjusted resource capacities to

determine value-risk tradeoff solutions. Ho & Ruhe [4] have

proposed an approach for when-to-release trade-off, which is

a predecessor to this method, utilizing a simplified quality-

effort quantification formula.

Existing tools such as OnTime (www.ontimenow.com)

focus on (Scrum) project management and tasks monitoring,

with timeline being planned manually by the manager, based

on pre-determined release duration, without the ability to

provide alternative (trade-off) solutions between plans. The

W2RP addresses precisely this issue, enabling informed

decision-making process in release planning, with

predictable and manageable impacts on release time,

business value, and quality.

IV. W2RP METHODOLOGY AND IMPLEMENTATION

A. Proposed Workflow

When-to-release planning follows an explorative method.

Three principal use cases are possible, with ∆T is the

maximum number of (work) days the release duration can be

changed, ∆V(Fi) is the change in value due to (number of)

functionality change, and ∆Q(Fi) is the change in quality due

to the change in test cases (during i-th scenario). Users can

configure the feasible range of changes for all three

parameters, based on historical data or project specific needs.

These factors will control the degree of acceptable change in

release time, value and quality.

W2RP’s workflow is shown in Figure 2 and further

illustrated in Section V. The scenario playing environment

assumes a baseline plan described by a release date RD0 and

a corresponding set of features F0. This plan can be created

manually or being the result of the application of any of the

existing tools available to generate release plans [10].

Figure 2: W2RP Workflow for fixed release date

Define scenarios allows specification of relative changes

to be made against the baseline plan. In each of the use case

scenarios, one of the parameters from the set of {release

time, release quality, release value} is fixed to a variation of

the respective baseline values. The new value (e. g. shorter

release duration), is taken from the specified interval of

exploration. In Run scenario, the user can interactively view

the implications of varying among the remaining criteria, e.g.

re-allocating testing effort or modifying the set of features to

be offered.

From all the scenarios explored, a pool of release plans is

generated. Analyze results eliminates all plans that are

dominated by another plan. All trade-off solutions will be

maintained in a pool of candidate release planning

alternatives. In Select and re-iterate, the product manager(s)

can either go back to define another scenario or terminate the

scenario playing process and select the most attractive plan,

representing the best balance between the competing criteria.

B. Prototype Implementation

As a proof-of-concept, we utilized the implementation of

the above W2RP process as a prototype plugin on an existing

release planning tool called ReleasePlanner [10].

ReleasePlanner was chosen because of its capabilities in term

of analytical release planning. Based on a set of initial pool

of features F, the tool can gather and prioritize releases based

on (often conflicting) voice of customers. Furthermore,

product managers can view, save, and compare different

release plans, based on the resource allocation, features

constraints, and view the predicted optimality of the release

(based on customers’ satisfaction). We then utilized and

evaluated the plugin, coupled with the increase in the

efficiency of the existing tool in a real life software project.

Table 1: Pseudo code of the W2RP core algorithm

Function Generate Solutions (F0:=Baseline plan, F:=

Features pool, α:= Quality reduction factor , ∆T:=change in

release duration, RD: Release Date)

Define: S := Solution pool, S* := Trade-off solution

Step 1: Generating solution pool S

Case 1: ∆T = RD’ - RD0 < 0

- While |∆T| > 0, |TRQ’-TRQ0| < α do

- Calculate F’ by:

- reduce the low valued feature(s) from F0 OR

- reducing test effort from low valued feature(s)

- Add F’ to S

Case 2: ∆T = RD’ - RD0 ≥ 0

- While ∆T ≥ 0, |TRQ’-TRQ0|<α do

- Calculate new features set F’ by:

- increase test effort of high valued feature(s) of

F0 OR

- add high valued feature(s) from features pool F.

- Add F’ to solution pool S

Step2: Generating trade off solutions S*

- Compare pair-wise every solution in S

- If there is no better solution than Fi, add Fi to S*

Step 3: Return trade-off solutions S*

C. Evaluation

We evaluated the implementation (in Table 1) using data

from a sample project, which is a Scrum-type development

project consisting of 22 features in the initial release F0,

selected as a baseline [4]. The plan was previously generated

from ReleasePlanner. In consideration of all the resources

needed and the capacities available, the release duration RD0

was initially determined to be 80 days.

The product manager would like to predict the

implications of varying release time, in this case, earlier up to

∆T = 15 days. The step-by-step execution of this example is

included in a video guide walkthrough [14].

Figure 3: Trade-off solutions in comparison mode

W2RP allows managers to interactively choose the

features set they want to be implemented (from the initial

feature set F0), specify a new release date, or update the

effort allocation to each major activity of the release

implementation process. The tool then generates a set of

possible plans (according to the described algorithm),

coupled with their degree of feasibility and optimality, and

built on the existing tool, in this case ReleasePlanner. This is

shown in Figure 3, where each plan is laid out with each

feature being able to interactively assign to release plans,

coupled with optimality.

)

Visually and interactively, the tool provides a bubble

chart for easy comparison and selection between alternative

plans (see Figure 4). The chart suggests the expected quality

of each plan (very high, high, and good quality) as compared

to the baseline plan. Each plan has a 3-point coordinate of:

change in release duration (work days), total release value

(point values), and expected quality standards. In this case,

the highlighted plan (red circle) is selected by product

manager since it provides good value, very high expected

quality and faster release by 9 days.

Figure 4: Visualization of trade-off solutions

D. Strengths and Limitations

The prototype plugin tool W2RP serves as a proof-of-

concept for the potential of shortening release durations with

predictable and manageable change in functionality and

quality. As there is no existing tool available having similar

capabilities, it was not possible to compare the tool with

another one at the moment.

W2RP is effective in generating alternative scenarios.

From varying project parameters (e.g. estimated defects, size

and complexity of features, testing effort estimates, etc.), the

tool allows analyzing sequences of scenarios. As the tool can

be integrated into existing planning tools, not just limited to

ReleasePlanner, giving it the ability to improve existing

release plans, and gather valuable data.

One key threat to construct validity of this approach is

the modeling and measurement of quality and value. Quality

modeling and qualification is complex, especially in the case

of integrated testing scenarios of large systems. The co-

relation between testing effort and quality, features and

business values need to be further examined and quantified.

The application of the tool requires extensive data about

effort, defect detections and testing efficiency. The better and

the more reliable the project data, the better the planning

result. However, even for uncertain data, using the tool for

some pro-active analysis is helpful and can also be done

under varying modeling assumptions.

V. CONCLUSIONS AND FUTURE WORK

This paper outlined an approach, and implementation of

the when-to-release tool W2RP. The decision support tool

allows to pro-actively investigating a user defined sequence

of release scenarios. As the result, product managers will be

presented with a set of alternatives about the implications of

varying the originally proposed release date. The impact will

be visible as an update on the predicted total release value or

by an update on the predicted total release quality.

In this paper, values and quality are modeled based on

estimated efforts. Other quality constraints and business

requirements, such as that of performance testing, and

technical debts, are also considered in the potential area of

work and application in future works as part of the modeling.

The prototype tool needs further analysis and evaluation

of its acceptance, applicability and usefulness. Currently, the

tool is integrated to existing industrial bug tracking tools

such as JIRA and release planning tools to collect and

analyze quality and requirements data from these tools in real

time. The W2RP concept can also be used as a frequent job

to re-optimize the solution set as new data becomes

available, in real-time. Future work is needed to better

estimate quality and to make the underlying development

process dynamic by allowing changing parameters.

REFERENCES

[1] B. Boehm, V. R. Basili, "Defect Reduction Top 10 List”, in

Computer, vol. 34, no. 1, 2001, pp. 135-137.

[2] C. Ebert, S. Brinkkemper, “Software product management –

An industry evaluation” in The Journal of Systems and

Software, 2014 , http://dx.doi.org/10.1016/j.jss.2013.12.042

[3] B.H. Far, “Software Reliability Models”, in Dependability &

Reliability of Software Systems (LN U of Calgary), 2012.

[4] J. Ho, G. Ruhe, "Releasing Sooner or Later: An Optimization

Approach and Its Case Study Evaluation", in Proceedings

Workshop RELENG on Release Engineering at ICSE, 2013.

[5] R. Lai, G. Mohit, P. K. Kapur, "A Study of When to Release a

Software Product from the Perspective of Software Reliability

Models" in Journal of Software, vol. 6, 2011, pp. 651-661.

[6] J. McElroy, G. Ruhe, “When-to-release decisions for features

with time-dependent value functions”, in Requirements

Engineering Journal, vol. 15, 2010, pp. 337-358.

[7] C. Morris A., J. Eliasberg, T.H. Ho, "New product

development: The performance and time-to-market tradeoff."

in Management Science vol. 42.2, 1996, pp. 173-186.

[8] H. Ohtera, S. Yamada, "Optimum Software-Release Time

Considering an Error-Detection Phenomenon During

Operation," in IEEE Trans. Reliability, vol. 39, 1990.

[9] R. Peng, et al. "Testing effort dependent software reliability

model for imperfect debugging process considering both

detection and correction" in Reliability Engineering & System

Safety, 2014.

[10] G. Ruhe, “Product Release Planning: Methods, Tools and

Applications”, CRC Press, 2010.

[11] K.E. Wiegers, "Software requirements," Microsoft Press, 2009.

[12] A. Wood, "Software reliability growth models: assumptions

vs. reality" in Proceedings from the Eighth International

Symposium on Software Reliability Engineering. IEEE. 1997.

[13] Z.S. Xu, Q.L. Da, “An overview of operators for aggregating

information” in International Journal of Intelligent Systems,

vol 18, 2003, pp. 953–969.

[14] https://sites.google.com/site/trongtanho/research/w2rp,

Research case study data, last accessed Feb 2014.

